【發病原因】
本癥是一種連鎖不完全顯性遺傳疾病,突變基因位於 X 染色體上,多發於男性,雜合子女性 G6PD 活性偏低,但無溶血;純合子女性可發病,但很少見。控制 G6PD 的基因呈復雜的多態性,可形成多種 G6PD 缺乏癥的變異型。該病誘因有:蠶豆;氧化藥物:解熱鎮痛藥、磺胺藥、硝基呋喃類、伯氨喹、維生素K、對氨水楊酸等;感染:病原體有細菌或病毒。
遺傳學研究:1986年,Persico、Martlni等分別用不同的方法成功地克隆出人G-6-PD基因,並獲得瞭cDNA序列,從而使G-6-PD的研究深入到基因水平,使人們能從基因水平去探討G-6-PD缺乏的蛋白質一級結構改變。1991年Ellson等測定瞭人G-6-PD基因組全順序。 G-6-PD基因長約18kb,由13個外顯子和12個內含子組成,編碼一個由515個氨基酸組成G-6-PD蛋白質。近年來,應用克隆G-6-PD基因技術或PCR聯合直接序列分析已鑒定出120餘種遺傳學變異型,其中除3例為核苷酸缺失外,餘均為單個或多個堿基置換,G-6-PD基因是一個看傢基因(homekeeping gene),因此對生存可能是必需的,導致G-6-PD活性完全喪失的突變(如缺失或無義突變)可能是致死的,除外顯子1、3、13外都已發現點突變。中國人中已發現15種點突變,現有研究證實不同地域、不同民族患者中50%以上為1376G→T和1388G→A。引起非球形細胞溶血性貧血的突變集中的在酶的羥基末端,第362~446個氨基酸的片段,而大部分導致其他疾病的突變則集中在酶的氨基末端。最讓人感興趣的是G-6-PD A-的突變。A-具有遺傳異質性,它在2個部位發生瞭堿基置換,其中一個是376A→G,另一個可以是202G→A,680G→A或968T→C,A-在美國黑人中的頻率為12%,另一種在非洲人中常見的變異型為G-6-PD A,在美國黑人中的頻率為20%,G-6-PD A的突變為376A→G,正是G-6-PD A-中一定有的一個突變。因此,Beutler等認為G-6-PD A-出現是從G-6-PDB(野生型)→G-6-PD A→G-6-PDA-,由於自然選擇(惡性瘧疾)A-的高頻率得以保存下來。按傳統生化分類方法分為同一個G-6-PD生化變異型有可能是不同的基因突變所致即其實質是不同的基因變異型。如G-6-PD(-)有3種類型的基因突變:①202G→A,376A→G;②680G→T,376A→G;③968T→G,376A→G。以前認為有一些是不同的生化變異型,其實質是同一堿基突變所致。如G-6-PD生化變異型Kaiping、Anant、Dhon、Petrieh-like、Sappoto-like均為1388G→A突變(463 Arg→His)。 G-6-PD基因定位於X q28,G-6-PD缺乏為性連鎖的不完全顯性遺傳。因此,帶有變異基因的男性會發病。女性G-6-PD缺乏雜合子有兩個紅細胞群,G-6-PD缺乏細胞和正常細胞。G-6-PD缺乏細胞與正常細胞的比例變化很大。一些雜合子女性表現為完全正常,另一些則表現為完全異常。G-6-PD雜合子表現的這種顯著變異性是X染色體失活過程的某些特性的結果。因為X染色體失活是隨機的,有時更多的父本X染色體是活化的細胞克隆有增殖優勢。在X染色體失活和成熟期間經過許多代細胞,即使某一種克隆比另一種隻有很小的選擇生長優勢就會導致正常和缺失細胞數之間顯著的差異,因而,在女性雜合子外周血中G-6-PD缺失紅細胞與正常紅細胞之比的這種顯著性差異就會導致其臨床表現各異。
G-6-PD及其生化變異型:G-6-PD缺乏癥是由於編碼G-6-PD氨基酸序列的G-6-PD結構基因異常所致。部分純化殘存酶的詳細的生化研究提示它們之間存在異質性,這些異常的酶即為G-6-PD生化變異型。1966年,世界衛生組織(WHO)在日內瓦召開的國際會議上對G-6-PD變異型的命名、分型標準及方法作瞭統一規定。G-6-PD的定型主要根據電泳速率及酶動力學特征參數,諸如酶活性、電泳速率、6-磷酸葡萄糖(G6P)和輔酶Ⅱ(NADP)的米氏常數(KM),底物同類物(去氧G6P、磷酸半乳糖、脫氨NADP、輔酶Ⅰ)利用率、熱穩定性、最適pH,但最低限度需要下列5項:①酶活性;②電泳速度;③G-6-PD米氏常數;④去氧G6P的相對利甩率;⑤熱穩定性。目前,國際上現已報道的G-6-PD變異型有400餘種,其中約300種是按WHO推薦的標準方法進行鑒定的,還有大約100種變異型是采用其他方法鑒定的。根據這些變異型的酶活性和臨床意義分為5大類:第1類變異型活性非常低(低於正常的10%)伴有終身溶血性貧血;第2類變異型,盡管體外活性非常低,但不伴有慢性溶血,隻有在某些特殊情況下才會發生溶血,這1類型是常見的類型如G-6-PD地中海(Mediterranean)型;第3類變異型其酶活性為正常的10%~60%,隻有在服用某些藥物或感染時才會發生溶血;第4類變異型是由於不改變酶的功能活性的突變所致;第5類變異型其酶的活性是增高的。第4和第5類沒有臨床意義。在中國人中已在香港、臺灣和海外華僑中發現12種,杜傳書等在廣東、海南、貴州、四川、貴陽、雲南等省發現35種,其中12種為世界上的新類型。國人變異型主要屬於第2和第3類變異型。
【發病機制】
G6PD 缺乏可因合成量減少、 G6PD 與其底物 (G6P) 或輔酶煙酰胺腺嘌呤二核苷酸磷酸 (NADP) 親和力降低等機制所引起。G-6-PD活性隨著細胞老化呈指數性減低。正常酶(G-6-PD B)體內半衰期為62天。網織紅細胞是混合細胞群活性的2倍,而老化細胞隻有一半的活性。G-6-PD A-的活性在網織紅細胞是正常的,但它爾後迅速減低,半衰期僅為13天。G-6-PD Mediterranean型的不穩定性甚至更顯著,半衰期隻有幾個小時。 G6PD 酶活性減低後還原型煙酰胺腺嘌呤二核苷酸磷酸 (NADPH) 減少,還原型谷胱甘肽 (GSH) 等抗氧化損傷物質缺乏,導致高鐵血紅素生成和珠蛋白變性,形成海因小體。 紅細胞的未成熟破壞的確切機制尚未完全明瞭,不同的溶血綜合征其機制可能不同。早年認為主要與紅細胞還原型谷胱甘肽(GSH)降低有關。紅細胞內外的過氧化產物被谷胱甘肽過氧化物酶(GSHPX)還原而解毒,同時消耗GSH,GSH被氧化為氧化型谷胱甘肽(GSSG)或與血紅蛋白的半胱氨酸結合形成混合二硫化合物(GSS-Hb)。在正常紅細胞,GSSG及GSS-Hb立即在還原型輔酶Ⅱ(NADPH)參與下,被谷胱甘肽還原酶(GR)還原成GSH作為補充。G-6-PD缺乏紅細胞的GSH被消耗後,不能得到充足的NADPH以還原GSSG及GSS-Hb,GSH得不到補充,GSH含量迅速下降,形成惡性降低,結果是GSSG和GSS-Hb在紅細胞內蓄積,變性形成Heinz小體,使紅細胞可塑性、變形性降低,在經脾竇時,紅細胞不易變形而被阻留破壞。近年來越來越多的研究提示,G-6-PD缺乏癥紅細胞溶血與紅細胞過氧化損傷有關。在血循環中的紅細胞處於高氧環境中,紅細胞膜一直處於細胞內外過氧化物包圍中,在紅細胞內,氧合血紅蛋白不斷轉變為高鐵血紅蛋白,此過程伴有超氧陰離子的產生。為對抗各種外在和內在的過氧化物損傷,紅細胞具有一系列抗氧化損害的保護機制,包括過氧化氫酶(Cat)、過氧化物酶(GSHPX)、超氧化物歧化酶(SOD)、GSH等,若這些自然保護機制有缺陷或活化的有害氧衍生物過多,血紅蛋白和紅細胞膜都將受到過氧化損害,並可造成不可逆損傷,導致紅細胞破壞,發生溶血。現在認為,G-6-PD缺乏癥紅細胞內不斷形成的過氧化物易傷性增高,其根本原因在於NADPH生成不足,並由此而導致GSH生成低下,功能性地缺乏Cat和GSHPX,抗氧化功能障礙,氧化易傷性增高。
【治療】 本病目前尚無特效治療手段。如無溶血不需治療。貧血嚴重時需輸血,但應避免親屬供血,由於溶血多為自限性,輸血1~2次即可。如由藥物誘發溶血發作,應立即停用可疑藥物,有感染者應積極控制感染。平時應避免使用伯氨喹啉類氧化性藥物及其他明確引起溶血的藥物,避免食用蠶豆。出現溶血時則作必要的對癥處理,大量飲水,酌情使用堿性藥物使尿液堿化。 輕癥患者急性溶血期予一般支持療法和補液即可奏效。溶血及貧血較重者註意水電解質平衡,糾正酸中毒,堿化尿液等預防腎功能衰竭;對嚴重貧血,Hb≤60g/L,或有心腦功能損害癥狀者應及時輸濃縮紅細胞,並監護至Hb尿消失;可試用維生素E、還原型谷胱甘肽等抗氧化作用,延長紅細胞壽命;新生兒黃疸按新生兒高膽紅素血癥治療;對CNSHA者,需依賴輸血維持生命者脾切除可能有幫助,有條件者可作造血幹細胞移植(HSCT)。 【預後】 預後良好。 G-6-PDA-型缺乏者溶血發作一般是自限性的。CNSHA患者可以發生膽石癥,在感染或服藥後溶血期病情加劇,但血紅蛋白水平仍相對穩定。幾乎所有藥物或感染誘導的溶血患者都可平安地恢復正常,蠶豆病和伴有核黃疸的新生兒黃疸相對較危險,但經及時治療病死率亦極低。
保健品查詢小兒葡萄糖-6-磷酸脫氫酶缺乏癥中醫治療方法a
中藥材查詢小兒葡萄糖-6-磷酸脫氫酶缺乏癥西醫治療方法a
藥療是根本,而食療能輔助藥物的治療,那麼小兒葡萄糖-6-磷酸脫氫酶缺乏癥的食療和飲食又是怎麼樣的?
藥品查詢